Hidden Dark Matter at Neutrino Experiments

Jennifer Kile, Amarjit Soni Brookhaven National Laboratory

September 9, 2009 DOE Review Based on arXiv:0908.3892 [hep-ph]

Motivation

- Dark matter makes up $\sim 20\%$ of our universe.
- Recent interest in "hidden" models: low-mass particles connected to SM only via high-energy interactions—new particles don't have to be heavy to be undiscovered.
- DM could be light, but coupled to SM particles at high scale.
- Little is known of nature of DM; should consider all observable DM-SM interactions.
- Desirable to do model-independent study of possible interactions of low-mass DM with SM.

Dark Matter Direct Searches

In usual DM direct search experiments:

- O(10 GeV 10 TeV) DM scatters elastically off O(10 100 GeV) nucleus.
- $\begin{array}{c} \bullet \quad \text{DM nonrelativistic, } v_f \sim 10^{-3}c. \text{ So, e.g.} \\ 100 \text{ GeV DM particle scattering off } 100 \text{ GeV nucleus:} \\ \text{nucleus receives momentum kick } p \sim 100 \text{ MeV.} \\ \end{array}$

Instead, we consider:

- Inelastic scattering $fN \to FN'$ ($f = \mathsf{DM}, \, N, N' = \mathsf{nuclei}, \, \mathsf{nucleons}, \, F = \nu, e, \, \mathsf{BSM...}$)
- Take $m_F << m_f$: outgoing mom. p_F , $p_{N'} \sim m_f$.
- Use existing detectors to look for light, inelastically scattering DM?

Neutrino Experiments

• Can consider case where F is invisible (not done here) or visible. We take case F=e.

$$fN \rightarrow eN' \longrightarrow NEUTRINO DETECTORS!$$

- Existing solar & reactor experiments probe $O(1-100 \ {\rm MeV})$ range in E_{ν} for various nuclei. \rightarrow corresponds to m_f of $1-100 \ {\rm MeV}$.
- Will specifically look at Super-K:

Usual interaction: $\bar{\nu}_e p \to n e^+ E_e \simeq E_{\nu}$.

Replace ν with nonrelativistic f: $\bar{f}p \rightarrow ne^+ E_e \simeq m_f$.

- $\rightarrow f$ looks like monoenergetic neutrinos.
- \rightarrow must translate limits on $\bar{\nu}_e$ to limits on \bar{f} .

Assumptions and Simplifications

Want model-independence-effective operator analysis.

Here, we consider DM which

- is fermionic and
- is a singlet under SM gauge group

So, we look for operators which

- are dimension-6 (or less)
- are $SU(3) \times SU(2) \times U(1)$ -invariant
- can give the process $\bar{f}u \rightarrow de^+$ and
- ullet aren't suppressed by u mass.

Will find f is of the mass relevant to ν experiments.

Operator Basis

This leaves 6 operators (all 6-D, suppressed by C_I/Λ^2):

$$\mathcal{O}_{W} = g \bar{L} \tau^{a} \tilde{\phi} \sigma^{\mu\nu} f W_{\mu\nu}^{a}
\mathcal{O}_{\tilde{V}} = \bar{\ell}_{R} \gamma_{\mu} f \phi^{\dagger} D_{\mu} \tilde{\phi}
\mathcal{O}_{T} = \epsilon_{ij} \bar{L}^{i} \sigma^{\mu\nu} f \bar{Q}^{j} \sigma_{\mu\nu} d_{R}
\mathcal{O}_{Sd} = \epsilon_{ij} \bar{L}^{i} f \bar{Q}^{j} d_{R}
\mathcal{O}_{Su} = \bar{L} f \bar{u}_{R} Q
\mathcal{O}_{VR} = \bar{\ell}_{R} \gamma_{\mu} f \bar{u}_{R} \gamma^{\mu} d_{R}$$

L,Q: SU(2) doublets.

 ℓ_R, u_R, d_R : right-handed SU(2) singlets.

$$\phi = {\sf SM}$$
 Higgs, $\tilde{\phi} = i au^2 \phi^*$.

In all cases, f right-handed.

Limits from DM Lifetime and γ 's

- DM lifetime must be long, rarely decay to γ 's ($\tau \gtrsim 10^{19} \mathrm{yr}$) or e^+e^- ($\tau \gtrsim 10^{17} \mathrm{yr}$): \rightarrow New Physics scale $> 10^3$ TeV for 5 op's.
- One op less constrained: $\mathcal{O}_{VR} = \bar{\ell}_R \gamma_\mu f \bar{u}_R \gamma^\mu d_R$: $m_f \lesssim m_\pi \simeq 140$ MeV to avoid tree-level decay. \rightarrow scale of m_f relevant for ν detectors.
- At one loop, \mathcal{O}_{VR} gives $f\to e^+e^-\nu_e$. \to NP Scale >20-80 TeV for $m_f\sim 20-80$ MeV .

Constraint on \mathcal{O}_{VR} strong, but weak enough for \mathcal{O}_{VR} to be interesting for ν experiments!

Neutrino Detector Cross-Section

If f comprises all DM,

$$\Phi_{DM} \sim \frac{\text{.3 GeV/cm}^3}{m_f} \times 230 \text{ km/s} \sim 10^8 - 10^{10}/\text{cm}^2\text{s}.$$

 \rightarrow Would give bump in SK e^+ energy spectrum.

Take $\bar{\nu}_e$ flux limit from Super-K relic supernova $\bar{\nu}_e$ search:

$$\Phi_{\bar{\nu}_e} \lesssim 1.2/\text{cm}^2\text{s for }20~\text{MeV} \lesssim E_{\nu} \lesssim 80~\text{MeV}$$

(8-10 orders of magnitude smaller!)

Results from Super-K

Ratio of cross-sections (v = Higgs v.e.v.):

$$\frac{\sigma_{\mathcal{O}}(m_f = E_{\nu})}{\sigma_{SM}(E_{\nu})} = \left(\frac{c}{v_f}\right) \frac{|C_{VR}|^2 v^4}{(8)\Lambda^4}$$

Results (for $20 \text{ MeV} < m_f < 80 \text{ MeV}$):

$$\frac{|C_{VR}|^2}{\Lambda^4} \lesssim \frac{1}{(120 \text{ TeV})^4} - \frac{1}{(80 \text{ TeV})^4}$$

Limits weaker if f only fraction of DM.

But, very strong limits!

Conclusions

- Nature of DM unknown—should consider other interactions!
- Model-independent analysis of DM interaction $\bar{f}p \rightarrow ne^+$ in ν exp'ts.
- Inelasticity of interaction allows us to probe different mass range (~ 100 MeV).
- Find one operator (comparatively) unconstrained by DM lifetime for light DM case.
- Reach of ν exp'ts to find light DM huge (~ 100 TeV). May be improved by, e.g., DUSEL.
- Should see if can be applied elsewhere.
- ν exp'ts might be telling us more than we think!